BBC News - Business

Pages

Monday 17 December 2012

Adrenergic System 2 lecture


They're subdivided into three subtypes: Beta1, Beta2 and Beta3.
Beta1 receptors:

Location    Action      
Heart    *Increased Automaticity of SA node with increased heart rate( +ve chronotropic effect),increased Conductivity of AV node(+ve dromotropic effect), increased Excitability of AV node and muscles predispose to arrhythmias.increased Contractility of the myocardium(+ve inotropic effect) result in increased stroke volume and Cardiac output and work and increased Oxygen consumption.
Decreased Refractory Period.

      
Kidney    Stimulation of Beta1 receptors on juxtaglomerular cells will increase Renin release (Renin converts Angiotensinogen into Angiotensin I )

      
Nerves    Presynaptic adrenergic and cholinergic terminals.

   

*: the action of Beta1 receptors in the heart is the followings:
increased Automaticity of SA node with increased heart rate (i.e. positive chronotropic effect).
Increased conductivity (velocity) in conducting tissues including AV node (i.e. positive dromotropic effect).
Increased excitability of AV node and muscles.
predisposing to arythmias.
Increased contractility of myocardium (i.e. positive inotropic effect) resulting in increasing stroke volume  increased cardiac output and work  increased O2 consumption and decreased refractory period of all tissues.
                   
                   
Beta2 Receptors:

Location    Action      
Blood Vessels    Vasodilation of skeletal muscles, renal and visceral vessels.
Decreased total peripheral resistance (TPR).
      
Lung    Bronchodilation
      
GIT    Smooth muscles in the intestinal wall are relaxed
      
Genitourinary system    Relaxation of Bladder wall.
Pregnant uterus relaxation  delay of premature labour
      
Skeletal muscles    Activation of Beta2 receptors  Tremor and increased K+ by skeletal muscles  Hypokalemia
      
Mast Cells    Decreased Histamine release.
      
Liver
    Increased Gluconeogenesis and Glycogenolysis
This will lead to Hyperglycemia.
      
Pancreas    Increase release of Glucagon lead to Hyperglycemia      
Heart    Heart has beta2 but much lesser than other organs.   

 Notes:
Cardiac Stimulation is largely determined by Beta1 receptors and to lesser extent by Beta2 receptors.
Ciliary muscles of eye have Beta Receptors( the subtype undetermined), their action isprobably relaxation.(not important)

Beta3 receptors:
Were found recently in fat cells, their action is to enhance lipolysis.



Mechanism of Activation of Beta Receptors:
Mediated by protein Gs

Beta-receptor                                                                                activation of adenyl             (all subtypes)                                                                                            cyclase


Beta2  Smooth muscle phosphorylation of                                  Increase cAMP
Myosin light chain kinase to an inactive
Form

                                                                                                               Beta1 (heart)
                                                                                             Increase the influx of Calcium

              











   
Activation of all subtypes of Beta receptors lead to activation of adenyl cyclase and this will lead to increased conversion of ATP to cAMP, both are mediated by protein Gs (stimulatory).
cAMP is the major 2nd messenger of beta receptor activation.
In the heart, the activation of beta receptors  increased influx of calcium across cell membrane and its sequestration from sarcoplasmic reticulum inside the cell.
Relaxation of smooth muscle may involve the Phosphorylation (inactivation) of myosin light chain kinase.
Beta activation  increase cAMP  Phosphorylation of myosin light chain kinase  inactive form  vasodilation and relaxation
Nitrate  increase cGMP  dephosphorylation of myosin light chain kinase  inactive form  relaxation.


Dopamine Receptors:
They're of 5 subtypes arranged in two families:
Family (1)  D1 and D5
Family (2)  D2, D3 and D4
Stimulation of  D1 family  stimulation of adenyl cyclase  smooth muscle relaxation  renal vessels dilation
Stimulation of D2 family  inhibit adenylyl cyclaes and open potassium channels  modulate transmitter release

Desensitization of Receptors:
Happens due to prolonged exposure to catecholamines  reduces responsivity. It is also known as tachyphylaxis or tolerance. Three mechanisms explain this phenomenon and they function over hours or days:
Sequestration of the receptor
Down-Regulation
Inability to couple to G-protein because  the receptor has been phosphorylated on the cytoplasmic side by eitherof protein kinase A or beta adrenergic receptor kinase (BARK).
Supersensitivity:occure when there is:
Depletion of Noradrenaline in synaptic cleft by receptors
Cut off adrenergic nerve supply (de-innervation)
Up-regulation.:this happens when someone used to take a drug for a while this will increase the no of receptors to that drug then when suddenly he stops using that drug the effect will be much greater than before even before he began to use the drug.
To avoid such cases we're "Tapering" the drug. I.e. gradually decrease the doses till stopping the drug.


Adrenergic Agonists:
According to chemical structure.
According to receptor sensitivity.
According to their mode of action.
According to chemical structure:
Catecholamine
They're sympathomimitic amine that contains 3,4-dihydroxybenzene group like adrenaline, Noradrenaline, dopamine, Dobutamine and Isoprenaline.
Both Dobutamine and Isoprenaline are synthetic.

Characteristics:
Show the highest potency.
Shortest half-life in pharmacology (2 min)
Do not readily penetrate into CNS.
Metabolized by COMT (postsynaptically and in the gut wall), MAO (intraneuronally in the mitochondria of liver cells and gut wall cells).
They're ineffective if given orally except Isoprenaline.

Non-Catecholamine:
They're phenylisopropylamines compounds lack the catechol hydroxyl groups,
They include: phenylphrine, ephedrine and amphetamine group.
Characteristics:
Not metabolized by COMT and they're poor substrates for MAO so they are given ORALLY.
Have prolonged duration of action.
Have increased lipid solubility.
Have greater access to CNS due to lipid solubility and they may act indirectly producing unwanted side effects.



According to receptor sensitivity:
Alpha-agonist.
Beta-agonist.

                According to their mode of action:
Direct acting agonists. Ex: (catecholamine and phenylephrine).
These drugs act directly on alpha and beta receptors.

Indirectly acting agonists. Ex: (Amphetamine, Tyramine).
Tyramine found in cheese, chocolate and beer, it's one of the sympathomimitics that act indirectly. It interacts with MAO inhibitors causing hypertensive crisis.
These drugs are taken up into Presynaptic neurons and cause the release of NA from cytoplasmic pool or vesicles of adrenergic neuron.

Mixed action  some agonist have both modes of action, they can directly stimulate Adrenoceptors and release NA from adrenergic neurons (indirect action).
Ex: Ephedrine (mainly direct)
      Metaraminol (mainly indirect)

Effect of Adrenergic Agonists:  depends on:
Selectivity of drug or Affinity of the receptor.

Dose of the drug.

Homeostatic reflexes:
The most important one is the baroreceptors reflex which is mediated by the stretch receptors located in the carotid sinus, aortic arch and atrium.

Drop of Blood Pressure  Reduce Stretch of baroreceptors  reduced afferent impulses to the medulla oblongata  production of efferent reflex via ANS  inhibition of parasympathetic and activation of sympathetic nervous system  increase TPR and increase cardiac output  Increase Blood Pressures
Catecholamine:
Noradrenaline:
Mainly affects alpha receptors.
Has weak effect on Beta1 receptors
Has no effect on Beta2 receptors.
So action on alpha1 = alpha2  and beta1 >> beta2

Adrenaline:
Interacts with both alpha and beta receptors
At low doses:
Beta effect (vasodilation) on the vascular system predominates.
At Higher doses:
Alpha effect (vasoconstriction) is strongest.
So action on alpha1 = alpha2 and beta1 = beta2

Isoprenaline:
Predominantly stimulated beta adrenergic receptors, it's action on alpha receptors is insignificant.
So; beta1 = beta2 >>>>>>>> alpha



0 التعليقات:

Post a Comment